CAMGSD
IST FCT EditPT | EN

Seminários e cursos curtosRSS feed

Seminários, para a disseminação informal de resultados de investigação, trabalho exploratório de equipas de investigação, actividades de difusão, etc., constituem a forma mais simples de encontros num centro de investigação de matemática.

O CAMGSD regista e publica o calendário dos seus seminários há bastante tempo, servindo páginas como esta não só como um método de anúncio dessas actividades mas também como um registo histórico.

Para uma interface de busca completa ver a página de seminários do Departamento de Matemática.

Sala P3.10, Pavilhão de Matemática Instituto Superior Técnico https://tecnico.ulisboa.pt

Análise, Geometria e Sistemas Dinâmicos

Joana Cabral, Instituto Superior Técnico and ISR.

The human brain exhibits cryptic spatiotemporal dynamics that can be investigated through the lens of coupled dynamical systems and spectral decomposition methods. In this talk, I will present how concepts from harmonic analysis, Markov processes, and oscillatory dynamics provide a rigorous mathematical framework for deciphering the hidden rules governing large-scale brain organisation.

More precisely, I will show how brain patterns switch as a Markov process; how eigenmodes exhibit damped oscillatory motion; and how collective rhythms emerge from metastable synchronisation. This work illustrates a bidirectional bridge: mathematical formalisms illuminate neuroscience phenomena, while brain data offers concrete applications for advancing theoretical frameworks—ultimately enabling us to understand the dynamical principles underlying cognitive function, consciousness and mental health.

Europe/Lisbon —

Sala P3.10, Pavilhão de Matemática Instituto Superior Técnico https://tecnico.ulisboa.pt

Geometria em Lisboa

Pierre Martinez, Université de Bretagne Occidentale.

I will first introduce the bigraded cohomology for real algebraic varieties developed by Johannes Huisman and Dewi Gleuher. This is a cohomology theory that refines the equivariant cohomology "à la Kahn-Krasnov" of the complex points of a real variety, the latter often being preferred (by the algebraic geometers) in the cohomological study of real algebraic varieties. Since the construction of this bigraded cohomology and its associated characteristic classes relies on the sheaf exponential morphism, I will explain how to produce an arithmetic (or algebraic) variant of these cohomology groups, whose main advantage is toeliminate topological or transcendental conditions. I will conclude by comparing these two versions of bigraded cohomology.

Financiamento actual: FCT UIDB/04459/2020 & FCT UIDP/04459/2020.

©2026, Instituto Superior Técnico. Todos os direitos reservados.