# Seminars and short courses

Seminars, for informal dissemination of research results, exploratory work by research teams, outreach activities, etc., constitute the simplest form of meetings at a Mathematics research centre.

CAMGSD has recorded the calendar of its seminars for a long time, this page serving both as a means of public announcement of forthcoming activities but also as a historic record.

For a full search interface see the Mathematics Department seminar page. Here you will be restricted to lists of forthcoming CAMGSD seminars for the next two weeks or to a given year.

### , Wednesday

#### , Room P3.10, Mathematics Building, Algebra

Ismar Volic, Wellesley College.

Cohomology of braids, graph complexes, and configuration space integrals.

I will explain how three integration techniques for producing cohomology classes — Chen integrals for loop spaces, Bott-Taubes integrals for knots and links, and Kontsevich integrals for configuration spaces — come together in the computation of the cohomology of spaces of braids. The relationship between various integrals is encoded by certain graph complexes. I will also talk about the generalizations to other spaces of maps into configuration spaces (of which braids are an example). This will lead to connections to spaces of link maps and, from there, to other topics such as rope length, manifold calculus of functors, and a conjecture of Koschorke, all of which I will touch upon briefly. This is joint work with Rafal Komendarczyk and Robin Koytcheff.

### , Thursday

#### , Room P4.35, Mathematics Building, Topological Quantum Field Theory

Marco Mackaay, Universidade do Algarve.

The 2-representation theory of Soergel bimodules of finite Coxeter type: a road map to the complete classification of all simple transitive 2-representations.

I will first recall Lusztig's asymptotic Hecke algebra and its categorification, a fusion category obtained from the perverse homology of Soergel bimodules. For example, for finite dihedral Coxeter type this fusion category is a 2-colored version of the semisimplified quotient of the module category of quantum $\operatorname{sl}(2)$ at a root of unity, which Reshetikhin-Turaev and Turaev-Viro used for the construction of 3-dimensional Topological Quantum Field Theories.

In the second part of my talk, I will recall the basics of 2-representation theory and indicate how the fusion categories above can conjecturally be used to study the 2-representation theory of Soergel bimodules of finite Coxeter type.

This is joint work with Mazorchuk, Miemietz, Tubbenhauer and Zhang.

### , Monday

#### , Room P3.10, Mathematics Building, Geometria em Lisboa

Hugues Auvray, Université Paris-Sud.

Complete extremal metrics and stability of pairs on Hirzebruch surfaces.

In this talk I will discuss the existence of complete extremal metrics on the complement of simple normal crossings divisors in compact Kähler manifolds, and stability of pairs, in the toric case.

Using constructions of Legendre and Apostolov-Calderbank-Gauduchon, we completely characterize when this holds for Hirzebruch surfaces. In particular, our results show that relative stability of a pair and the existence of extremal Poincaré type/cusp metrics do not coincide. However, stability is equivalent to the existence of a complete extremal metric on the complement of the divisor in our examples. It is the Poincaré type condition on the asymptotics of the extremal metric that fails in general.

This is joint work with Vestislav Apostolov and Lars Sektnan.